Piggott, Glyne. 1992. Variability in Feature Dependency: The Case of Nasality. Natural Language and Linguistic Theory, 10:33-78.
Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative Grammar. To appear, MIT Press.
Rosenthall, Samuel. 1994. Vowel/Glide Alternations in a Theory of Constraint Interaction. PhD dissertation, University of Massachusetts, Amherst.
Smolensky, Paul. 1995. On the Internal Structure of the Constraint Component Con of UG. Handout to a talk presented at UCLA.
Steriade, Donca. 1995. Underspecification and Markedness. In A Handbook of Phonological Theory, ed. J. Goldsmith, pp. 114-174. Cambridge, MA: Blackwell.
Stevens, Alan M. 1968. Madurese Phonology and Morphology. American Oriental Series 52. New Haven, CT: American Oriental Series.
Suzuki, Keichiro. 1998. A Typological Investigation of Dissimilation. PhD dissertation, University of Arizona, Tucson.
Topping, Donald M. 1973. Chamorro Reference Grammar. Honolulu, HI: University of Hawail Press.
Trigo, Loren. 1991. On Pharynx-Larynx Interactions. Phonology 8:113-136.
Uhlenbeck, E. M. 1949. De Structuur van het Javaanse Morpheem. Bandung: Nix.
Urbanczyk, Suzanne. 1996. Patterns of Reduplication in Lushootseed. PhD dissertation, University of Massachusetts, Amherst.
Walker, Rachel. 1998. Nasalization, Neutral Segments, and Opacity Effects. PhD dissertation, University of California, Santa Cruz.
Walker, Rachel. To appear. Reinterpreting Transparency in Nasal Harmony. In HIL Phonology Papers IV. Amsterdam: Benjamins. ROA 306-0399, http://ruccs.rutgers.edu/roa,html.
Wolff, J. U. 1973. Verbal Inflection in Proto-Austronesian. Parangal kay Cecilio Lopez: Essays in Honor of Cecilio Lopez on his Seventy-Fifth Birthday, ed. A. B. Gonzalez, pp. 71-94. Philippine Journal of Linguistics special monograph issue 4.
Zuraw, Kie. 2000. Patterned Exceptions in Phonology. PhD dissertation, UCLA.

A Critical View of Licensing by Cue: Codas and Obstruents in Eastern Andalusian Spanish

CHIP GERFEN

1. Introduction

The confluence of two interconnected yet independent research programs underlies this chapter. One regards the issue of language-particular phonetics, while the other concems the emergence of Optimality Theory as the dominant paradigm in contemporary phonology. Regarding the first, research over the past twenty years has clearly shown that at least part of phonetic implementation must be viewed as falling within the purview of the linguistic grammar (see, for example, Pierrehumbert 1980; Pierrehumbert and Beckman 1988; Keating 1988; Cohn 1990; Huffman 1989). An interesting consequence of this is that language-particular phonetics raises difficult questions regarding the objects and nature of phonological inquiry. These questions pertain, for example, to whether certain phenomena are phonological or phonetic, to where and/or how the line should be drawn between phonetics and phonology (e.g., Keating 1990; Huffman 1993; Pierrehumbert 1991; Cohn 1993, 1999; Zsiga 1997; Kingston and Diehl 1994; Myers 1999; Gerfen 1999), and to whether any line should be drawn at all (Ohala 1990).

Secondly, Optimality Theory (Prince and Smolensky 1993, hereafter OT) does not constitute a theory of possible linguistic constraints per se. Rather it provides an architecture for evaluating input/output pairings in terms of a set of (partially) rank-ordered constraints. Insofar as it is a theory of how constraints interact, nothing in the architecture of the theory itself dictates the nature of the constraints invoked. In fact, given that a fundamental axiom of OT is that all constraints are violable, OT actually affords the opportunity to construct grammars from universal phonetic principles. This has traditionally been somewhat problematic for phonological theory, in that it has been difficult to reconcile the
putative universality of phonetically based principles with languageparticular counterexamples to the generalizations that give rise to those very same principles. ${ }^{1}$ In OT, by contrast, we expect to find constraint violations. That is, violations do not falsify the universality of phonetically motivated principles. Rather, violations account for why such prin-ciples constitute tendencies rather than absolutes. ${ }^{2}$

The combination of an architecture that does not inherently restrict the nature of what can be a constraint with the ability to express phonetic universals in a violable fashion has given rise to a proliferation of constraints in the literature. Thus, constraints have been proposed that take as their arguments an ever-growing range of elements. Many refer to familiar categorical features. Constraints governing feature cooccurrence, such as ATR/HI (Archangeli and Pulleyblank 1994), are an example. Other constraints refer to the alignment of morphological and/or phonological structures (McCarthy and Prince 1993) or to privileged positions within morphemes (Beckman 1997a). Of particular relevance here is that numerous constraints have been employed that reference syllable structure. For example, Onset and *Complex (see Prince and Smolensky 1993) militate for syllables with onsets while constraining possible syllable margins, respectively. Beckman (1997b) makes use of Faithfulness in Onset position. Ito, Mester, and Padgett (1995) and Ito and Mester (1994) employ Coda Conditions (CodaCond) to account for featural licensing or nonlicensing, as does Lombardi (1999, this volume), who also employs a positional licensing constraint that presupposes syllable structure. ${ }^{3}$

At the same time, numerous constraints have been proposed that refer to phenomena outside of the traditional purview of work in generative phonology. Such constraints reference gradient phonetic properties such as duration or fo (Kirchner 1997), general functional principles regarding minimal effort or maximal clarity, such as Lazy (Kirchner 1997, this volume), Maintain and Mindist (Flemming 1995), perceptual Space constraints (NiChosain and Padgett, this volume), or phonetic contexts directly (Steriade 1997). In short, if research in phonetics and phonology has called attention to the role that phonetics must play in the grammar and, as a consequence, to the difficulty of distinguishing between the phonetic and the phonological, OT has made it easy, formally, to eradicate the line between the two.

Within this context, the broad issue under consideration here is the licensing of segmental contrast, with a specific focus on the role of phonetic cues in determining contrast distribution. In particular, I examine recent claims that contrast licensing is best viewed as being directly driven by the presence or absence of phonetic cues (cf. Steriade 1997),
rather than by constraints that call upon familiar phonological entities such as syllable onsets and/or codas. Anticipating my conclusions, I will argue that while cue-based accounts are attractive and often highly insightful, they fail to eliminate the need for more traditional constraints in the phonological grammar.

As a point of departure, in Section 21 discuss Steriade's (1997) notion of licensing by cue as representative of direct phonetic licensing. In so doing, I review two cases that appear to motivate the superiority of cue licensing both in terms of empirical coverage and explanatory depth. In Section 3, I turn to the problem of obstruent licensing (or, alternatively, obstruent neutralization) in coda position in Eastern Andalusian Spanish. Here, I argue that the best account of obstruent licensing in Eastern Andalusian resides in a more traditional, syllable-based analysis. Finally, I present my conclusions in Section 4 , advocating a view in which both phonetic cues and traditional structures have an active role to play in phonology.

2. Direct Phonetic Licensing

Steriade's (1997) recent discussion of licensing by cue provides a clear example of a directly phonetic approach to accounting for phonotactic constraints on contrast licensing. A simple example is her discussion of the distribution of apical stops in Gujarati (with data from Dave 1977), which contrasts the plain alveolar [t] with its retroflex counterpart [t]. Steriade notes that, phonetically, what most clearly differentiates these stops is the presence of VC , but not CV , formant transitions. In Steriade's terms, the VC context supplies the richest acoustic cues for implementing the distinction, and Steriade argues that this phonetic generalization has two direct consequences for phonological markedness. One is that if a language loses the contrast between [t] and [t], it will do so first in word-initial or postconsonantal position that is, in a position lacking VC transitions. The other is that if a language possesses this contrast, it will have it postvocalically. Importantly, neither of the relevant contexts, postvocalic and non-postvocalic, translates into a single syllable position. For example, although word-initial consonants will be onsets, postconsonantal consonants can either be onsets or codas, depending on the preceding segmental material and the syllabification pattern of the language. Steriade concludes that it is thus not syllable position per se that licenses contrast and drives markedness in this case. Rather, it is the presence of a phonetic environment that is cue-rich - that is, a phonetic environment that renders the contrast casier to implement.

A second illustrative case discussed by Steriade involves the licensing (or neutralization) of laryngeal features in Klamath. Building on Blevins (1993), Steriade notes that Klamath has contrastive aspiration and ejection on obstruents, but that these contrasts are positionally conditioned. Specifically, laryngeal contrasts are neutralized in two contexts: before another obstruent and word-inally. At first glance, this appears to make Klamath a prototypical case of laryngeal neutralization in coda position (cf. Lombardi 1991, 1995), given that pre-obstruent and word-final positions are generally subsumable under the category of syllable coda. However, for Klamath this approach quickly runs into trouble.

The problem stems from the fact that aspirates and ejectives are licensed in Klamath before plain sonorant consonants and that all VCCV sequences in Klamath must be syllabified VC.CV. Thus, even if a CC cluster consists of an obstruent followed by a plain sonorant, as in /phet'wa/ 'floats in water', the surface syllabification is [$p^{\text {h }} \mathrm{et}$ '. wa], a form in which ejection is licensed in coda position. ${ }^{4}$ Clearly, then, one cannot trivially argue that syllable position is responsible for the licensing/neutralization of contrastive ejection and aspiration in obstruents in Klamath. Instead, Steriade claims that the situation is better understood in terms of the phonetic context in which the laryngeal features are licensed - that is, that laryngealization is licensed in an environment sufficiently rich in phonetic cues.

What are the relevant cues? For obstruent aspiration and ejection, Steriade argues that they are burst properties and VOT, both of which require a "right-hand modal sonorant context" (1997:94) to be felicitously implemented. Under this view, the modal voicing of a plain sonorant consonant provides the necessary context, regardless of whether that sonorant is an onset or a coda. In broad strokes, then, Steriade's arguments really amount to two fundamental claims First, we should look to what have traditionally been viewed by phonologists as low-level phonetic (i.e., nonphonological) contextual properties such as CV transitions, presence or absence of burst, f0 excursions, duration, and so forth, for explanations regarding where phonological contrasts are licensed/neutralized. Secondly, the formal encoding of these patterns in the grammar should be accomplished by direct reference to these phonetic properties rather than through more traditional phonological constraints. That is, * EJECTION IN Cue-lmpoverxshed Contexts-- contexts that are decomposed into harmonic scales and that project a range of constraints - rather than * Eiectron in Coda. That this is not an oversimplification of Steriade's position is evidenced by the following strong claim: "More generally, it remains to be seen whether the syllable as a constituent is at all a relevant factor in controlling phonotactic possibilities" (1997:99).

In the remainder of this chapter, I discuss data that challenge this view by militating for a case of syllable-based rather than direct phonetic licensing of contrast. In particular, I examine the licensing of obstruents in coda position in Eastern Andalusian Spanish (EAS).

3. Obstruent Licensing in Eastern Andalusian

In this section I examine the phenomenon of obstruent licensing in Eastern Andalusian. Section 3.1 provides the necessary background, with a brief discussion of coda phonotactics in Standard Peninsular Spanish (SPS). I then turn in Section 3.2 to a description of the relevant EAS facts and to the arguments for why syllable position, and not simply phonetic context, is crucial to understanding the EAS patterns. In Section 3.3, I briefly sketch how a syllable-based account would proceed in OT.

3.1. Standard Peninsular Spanish and Obstruent Codas

As is well known, /s/ is by far the most common coda obstruent in Spanish. This is exemplified in forms such as [kas.ko] 'helmet' and [ga.fas] 'eyeglasses'. ${ }^{5}$ Other obstruents also surface as codas, although these almost always appear word-internally. ${ }^{6}$ Relevant here is that wordinternal coda obstruents are contrastive for both place and voice features in SPS. The range of data is given in (1) and (2).

1) Voiced and voiceless coda obstruents before voiceless onsets
a) [ab.sur.do] 'absurd', [sub.sis.tir] 'subsist', [ob.tu.so] 'obtuse',

$$
\text { [ob. } \theta \mathrm{e} . \mathrm{no} \text {] 'obscene', [sub.ko.mi.sjon] 'subcommission', }
$$

[ab.sen.tis.mo] 'absenteeism', [ad.sor.ber] 'absorb', [ad.ki.rir]
'acquire', [ad.xum.to] 'adjunct', [ob.te.ner] 'obtain'
b) [kap.tar] 'capture', [ap.to] 'apt', [kap.su.la] 'capsule', [klep.to.ma.no]
'kleptomaniac', [et., $\mathrm{e}, \mathrm{te}, \mathrm{ra]}$ 'etcetera', [pak.to] 'pact', [ak. $\theta \mathrm{e}$, so] 'access', [ek.si.lio] 'exile', [ak.tor] 'actor', [de.fek.to] 'defect',
[in.fek.tar] 'infect', [fak.tor] 'factor'

In (1a), voiced obstruent codas surface before voiceless onsets. Note that these consonants need not share place or manner features (e.g., [ad.xun.to]). In (1b), we have cases in which voiceless obstruent codas are followed by voiceless onsets, which, again, need not share their place and manner features with the preceding coda (e.g., [ak. $\theta \mathrm{e}$. so] 'access').

By contrast, (2a) and (2b), respectively, provide examples in which voiced and voiceless codas precede a following onset that is phonetically voiced. Again, there is no obligatory sharing of place and manner features between the coda and the following onset (e.g., [mag.da.le.na] 'cupcake' and [tek.ni.ko] 'technical').
2) Voiced and voiceless obstruents before phonetically voiced onsets
a) [ab.di.kar] 'abdicate', [sub.di.to] 'subject', [ab.ne.gar] 'renounce',
[ad.mi.rar] 'admire', [e.nig.ma] 'enigma', [ag.nos.ti.ko] 'agnostic',
[sig.no] 'sign', [pug.nar] 'bid', [dig.no] 'dignified', [mag.da.le.na]
'cupcake', [ig.no.ran.te] 'ignorant', [dog.ma.ti.ko] 'dogmatic'
b) [ip.no.sis] 'hypnosis', [et.na] 'Etna', [a.rak.ni.do] 'arachnid', [fut.bol]
'soccer', [et.ni.ko] 'ethnic', [ak.ne] 'acne', [ak.me] 'acme', [ap.nea]
'apnea', [tek.ni.co] 'technical', [rit.mo] 'rhythm', [a.rit.me.ti.ka]
'arithmetic
Note that while this does not pretend to exhaust the generalizations regarding syllable contact in Spanish, such forms do indicate that we cannot globally attribute the voicing, place, or manner of coda obstruents to those of a following onset. In SPS, these features can be licensed on their own. These observations lead us to the case of Eastern Andalusian.

3.2. Obstruent Codas and EAS

One of the best-known features of EAS is the phenomenon of s-aspiration, which is most commonly discussed as involving the "deletion" of word-final /s/ and the concomitant aspiration and sometimes lengthening of the preceding vowel (see, for example, Zamora Vicente 1969; Rodríguez Castellano and Palacio 1948; Alarcos Llorach 1958; Goldsmith 1981; Zamora Munné and Guitart 1982; Guitart 1985; Hualde
1987). This is illustrated in forms such as /ganas/, 'desire', which are realized in EAS as [ga.na ${ }^{\mathrm{h}}$]. Less discussion, however, has focused on the fact that s -aspiration is not limited to word-final tokens of $/ \mathrm{s} /$ (see, for example, Romero 1995; Gerfen and Piñar 1999). ${ }^{7}$ These word-internal cases of s-aspiration result in the lengthening (i.e., gemination) of the following consonant. This can be seen in the words in (3), which contrast EAS realizations with their SPS counterparts.

For purposes of illustration, we can see that gemination is clearly visible in the representative spectrograms in Figures 6.1 and 6.2 for a native EAS speaker (S1). Figure 6.1 shows the singleton /l/ of [alero] 'eaves of a roof', while Figure 6.2 provides an example of the geminate in [e^{h} I.la. $\beta \mathrm{ol}$] 'Slavic'.

Descriptively, the simplest characterization of both word-internal and word-final s-aspiration is that they occur in coda position. This becomes clear when we consider the general behavior of [sC] clusters across all dialects of Spanish. As is well known, $[\mathrm{sC}]$ clusters (where C is any obstruent, liquid, or nasal) are banned in onsets in Spanish. That [sC] clusters must be heterosyllabic can be demonstrated by garden-variety distributional arguments. Thus, while forms such as [es.ta.do] 'state' abound, Spanish lacks any forms such as *[sta.do]. Additionally, borrowed forms beginning with $[\mathrm{sC}]$ clusters are phonologized via the epenthesis of a word-initial [e], as in [es.ki] 'ski', and, similarly, the socalled foreign accent syndrome, exemplified by the production of [es.kul] for English [skul] 'school', also provides evidence for the impossibility of tautosyllabic [sC] clusters in Spanish.

Arguably, in and of itself this constitutes evidence that syllable structure plays a role in general Spanish phonotactics. That is, it is important to recognize that Spanish does not ban [sC] sequences. Rather, $[\mathrm{sC}]$ sequences are only prohibited in a particular syllable position, namely, in the onset. If we abandon the notion of the syllable in accounting for the behavior of $/ \mathrm{s} / \mathrm{in} / \mathrm{sC} /$ clusters, one might attempt to claim that /s/ is licensed only when adjacent to a preceding or following vowel. However, such an approach quickly runs into problems because of forms such as [abs.trak.to] 'abstract', in which $/ \mathrm{s} /$ is both preceded and followed by a consonant. In addition, it is unclear why such a condition should be

Figure 6.1. /alero/ 'eaves of a roof'.

Figure 6.2. /es.la.Bo/ 'Slavic'.
imposed at all, given that the strongest cues for place are found in VC and CV transitions. That is, it is unclear why VC or CV contexts should be a requisite for cueing / $\mathrm{s} /$ in particular, a sibilant whose most salient cues are internal to the segment (more on this later). Crucially, then, the generalization that [sC] clusters are banned in onset raises serious challenges to anyone seeking to abandon the syllable in favor of constraints that govern segmental licensing via direct reference to phonetic cues.

Returning to the issue of s-aspiration in EAS, we see that all of the word-internal cases of s-aspiration thus correspond to forms in which $/ \mathrm{s}$ /
would surface as a coda in SPS. The length distinction illustrated in the spectrograms in Figures 6.1 and 6.2 is highly robust. ${ }^{8}$ To confirm this, I ran a small experiment, in which I recorded two female native speakers of EAS (S1 and S2), both from the city of Granada, Spain. The speakers recorded a set of eight words ([es.la. β o] 'Slavic' appeared twice on the list), each of which was written on a single note card in Spanish orthography. The list is provided in (4).
(4) Experimental list

orthography	gloss	phonemic representation
eslavo	'Slavic'	/eslabo/
Atlanta	'Atlanta'	/atlanta/
atleta	'athlete'	/atleta/
aclara	's/he/it clears up'	/aklara/
aclama	's/he acclaims'	/aklama/
alaba	's/he praised'	/alaba/
alero	'eaves of a roof'	/alero/

Speakers were instructed to produce each word in the frame sentence La palabra es \qquad , tio the word is \qquad , pal'. The note cards were randomized by shuffling after each pass through the list, and each was read multiple times by each speaker (speaker $S 1=21$ repetitions per word; speaker $S 2=12$ repetitions per word). The readings were done in a quiet room and recorded on a Marantz PMD 222 professional cassette recorder with a Shure SM10A-CM close-talking, unidirectional microphone. Speakers were informed that they were participating in a study of how people from Granada speak and that they should speak in a natural and relaxed fashion, as if they were at home with family. These instructions were aimed at mitigating the chances that the standard orthography would induce a formal reading register - that is, that speakers would fail to produce forms with their normal s-aspiration. Additionally, the frame itself is highly informal in tone in order to induce speakers to speak naturally. During the task, neither speaker had any difficulty producing typical EAS forms.

The data were digitized at 22 kHz with 16 -bit sampling and analyzed in SoundScope on a Power Macintosh computer. For each word, the

Figure 6.3. // durations in msec by speaker and context.
duration of $/ 1 /$ was measured by hand. The onset of $/ / /$ was determined by locating the amplitude drop in the waveform and the offset of F2 of the preceding vowel. The offset of $/ \mathrm{l} /$ was determined by locating the rise in amplitude of the waveform and the onset of F 2 in the following vowel. After measuring the data, I first compared the duration of the geminate [1:] in the s-aspirated context (/es.la.bo/ 'Slavic') with that of the singleton [I] in the words /a.le.ro/ 'eaves' and /a.la.ba/ 's/he praises'. That is, I compared the duration of [1] in the underlying /VsIV/ context with that of the /VIV/ context. The robustness of the distinction is shown in (5), where the mean duration of geminated [I] in the s-aspirated forms is more than twice that of the singleton [1] for both speakers. Figure 6.3 provides a bar graph of the mean [1] durations and standard deviations by context for each speaker. Not surprisingly, a two-factor ANOVA with context (/VIV/ vs. /VsIV/) as the first factor and speaker as the second shows that the difference in [I] duration is highly significant by context ($p=.0001$).
(5) Mean /1/durations

speaker	[1] duration in /VIV/ in msec.	st. dev.	[1] duration in /VsIV/ in msec.	st. dev.
S1	76.936	(8.012)	162.843	(14.989)
S2	72.302	(13.260)	171.5	(17.706)

Comparing Eastern Andalusian to Standard Peninsular Spanish, we thus see that in SPS all [sC] clusters must be heterosyllabic, while EAS bans $/ \mathrm{s} /$ from appearing in coda position. In word-final position in EAS, /s/ is deleted, but word-internally, the coda position is maintained via gemination of the following onset. This is summarized in (6).
(6) Comparison of SPS and EAS

Context	SPS	EAS
${ }_{\sigma}[s C$	no	no
$s]_{\sigma} \#$	yes	no
$s]_{\sigma}[C$	yes	no, but syllable is closed via gemination

How might this scenario be accounted for under a phonetic cues approach? If we abandon syllable structure as the driving force behind the distributional facts, it is reasonable to assume that we would be led to claim that EAS requires [sV] contexts for the licensing of [s]. That is, $[\mathrm{s}]$ is only licensed in contexts in which there is a transition to a following vowel. Our contextual constraints would thus be ordered such that $[\mathrm{s}]$ is banned in contexts lacking this transition.

One objection to this approach, however, is that unlike laryngeal features in stops, the most salient cues for fricatives lie largely within the fricatives themselves. In the case of sibilants such as $/ \mathrm{s} /$, high-frequency noise is generated as a result of channel turbulence at the point of constriction, as well as by the noise resulting from airflow hitting the teeth in front of the constriction (see, for example, Shadle 1997; Johnson 1997; Stevens 1998). In Steriade's terms, sibilants can be said to have strong internal cues, rather than relying heavily on contextual cues, as stops must. A priori, we should thus expect contexts such as [CV] transitions to play a far less significant role in licensing fricatives than in the licensing of laryngeal features in stops.

Further objections to a phonetic cues approach emerge when we consider the behavior of other obstruents in Eastern Andalusian. As noted earlier, relatively little attention has been paid to the fact that all obstruent codas are aspirated, in that all word-internal codas that would surface as obstruents in SPS trigger the gemination of the following onset in EAS. Examples are given in (7). ${ }^{9.10}$
(7) Aspiration of all obstruent codas in EAS

SPS	EAS	Gloss
[ap.to]	[${ }^{\text {h }}$ t.to]	'apt'
[piө.ka]	[pi ${ }^{\text {b } k . k a] ~}$	'pinch, small amount'
[ak. θ jon]	$\left[a^{\text {b }} \theta . \theta\right.$ jon $]\left(\left[a^{\text {h }}\right.\right.$ s.sjon $\left.]\right)$	'action'
[ob.tu.so]	[$\mathrm{o}^{\text {b t.tu.so] }}$	'obtuse'

Of particular interest here is the behavior of stop + liquid clusters. As the data in (8) show, these are not globally banned as onsets in EAS (or any other dialect of Spanish).
(8) Initial stop+liquid clusters
a) [klaro] 'clear'
c) [plano] 'flat'
b) [grado] 'grade'
d) [trapo]
'rag'

Word-internally in EAS, the clusters in (8) do not trigger the gemination of the following liquid, as seen in (9). Put in simple terms, the obstruents appear to be patterning as part of the onset.
(9) Word-internal obstruent+liquid clusters
a) [a.klara] 's/he/it clears up' c) [a.plika] 's/he/it applies'
b) [a.grada] 's/he/it pleases' d) [a.trapa] 's/he/it traps'

However, such forms might equally look like an argument in favor of the cue licensing approach. Specifically, the distinctive voicing and place features for obstruent stops can be viewed as banned when the following C is an obstruent. Thus, underlying lapto/ 'apt' is realized in EAS as [a $\mathrm{a}^{\mathrm{h}} t \mathrm{t}$] because the underlying obstruent + obstruent contexts are cue-impoverished relative to the expression of voicing and place on Cl . By contrast, the modal voicing of the following liquid in forms such as [aplika] 's/he applies' presumably provides a sufficiently rich context for the expression of the cues for voicing and place at the release of the stop.

Though I have no disagreement with the reasoning behind such a story, serious problems arise regarding its adequacy in accounting for the

Figure 6.4. /aklara/ 's/he clears up'.
data directly. First, the problem of /sl/ clusters remains unresolved. That is, why should medial [kI$]$ and $[\mathrm{pl}]$ be licit clusters, while /sl/ triggers s-aspiration? Secondly, we miss a broader generalization that becomes evident upon consideration of the behavior of /t//clusters in EAS. Interestingly, these behave phonetically like /sl/ clusters, rather than like their $/ \mathrm{pl} /$ and $/ \mathrm{kl} /$ counterparts. That is, input $/ \mathrm{tl} /$ clusters pattern as though the underlying /t/ must be syllabified as a coda, thus conditioning the gemination of the following $/ \mathrm{l}$.

Note that the syllabification of $/ \mathrm{t} 1 /$ clusters is variable across Spanish dialects (see Harris 1983). In Mexico, they can be onsets, as evidenced by the word-initial /tl/ clusters incorporated into Mexican Spanish from contact with indigenous American languages; see (10). Though initial /t// clusters are vanishingly rare at best in peninsular Spanish dialects, we do find common forms such as /atlas/ 'atlas', /atlantico/ 'Atlantic', /atleta/ 'athlete', or /atlanta/ 'Atlanta', all of which contain medial /tl/ clusters. Of particular importance here is that their phonetic implementation makes it clear that EAS treats the /t/ of underlying word-internal /VtlV/ sequences as it does all other obstruent codas. Consider, for example, the spectrograms in Figures 6.4 and 6.5, which contrast /aklara/ 's/he makes clear' with /atleta/ 'athlete', respectively, for S1.
(10) /tl/ onsets in Mexican Spanish
a) [tla.pa.ne.co] 'Tlapaneco (language)
b) [wau.tla] 'Huautla (name of a town)'

Figure 6.5. /atleta/'athlete'.

Figure 6.6. [1] in $/ \mathrm{VtIV} /$ vs. $/ \mathrm{VkIV} /$.

In /akiara/, there is full stop closure for [k] followed by the liquid [1$]$. By contrast, /atleta/ lacks any stop closure for the first /t/. Rather, /atleta/ is phonetically realized as [a"lleta], with [1] gemination of the type that we saw above in [$\mathrm{e}^{h} l \mathrm{la}$ Bo] from underlying /eslabo/ 'Slavic'. Phonetically, then, $/ \mathrm{t} / \mathrm{in} / \mathrm{t} /$ clusters is behaving in the same way that all other obstruent codas behave in EAS. This can be seen by comparing average [1] durations in underlying /VtlV/ contexts with /VklV/ contexts in Figure 6.6. Again, a two-factor ANOVA of $/ 1 /$ duration by context (/VklV/vs. /VtIV/) and speaker reveals context to be highly significant ($p=.0001$).

Figure 6.7. /l/ duration in all contexts by speaker.
The bar graph in Figure 6.7 shows the full range of data involving all four contexts measured in the words in the experimental list above: $/ \mathrm{VIV} /, / \mathrm{VtlV} /, / \mathrm{VsIV} /$, and $/ \mathrm{VkIV} /$, respectively. Note the clear two-way split for both speakers consisting of [1]-gemination in coda contexts (/VslV/ and $/ \mathrm{VtlV} /$) versus the singleton [1] in the onset cluster context /VklV/ and the /VIV/ context. To test this, I recoded the data, creating two categories, coda (pooling the /VtlV/ and/VslV/conditions) and onset (pooling /VkIV/ and /VIV/ conditions). Again, a two-factor ANOVA of [I] duration by context and subject confirms that [1] is significantly longer in the coda context ($p=.0001$).

In sum, phonetic evidence confirms that [kl] patterns as an onset in EAS, while the /t/ of /tl/ clusters patterns identically to underlying /s/ in $/ \mathrm{sC} /$ clusters in triggering so-called s-aspiration. Its behavior is entirely consistent with what we know to be the behavior of all obstruent codas in EAS. And this leads us to the larger conclusion that it is syllable position and not simply phonetic context that dictates the licensing of distinctive features in EAS obstruents. In this sense, EAS constitutes an interesting counterpoint to Steriade's Klamath discussion in that EAS can be viewed as an anti-Klamath. It isn't the phonetic sequencing that conditions contrast licensing independent of syllable structure. Rather, it is syllable structure itself that drives licensing. ${ }^{\text {. }}$

3.3. Sketching an OT Approach

In OT terms, the most straightforward characterization of the differences in the distributional properties of obstruent contrasts in EAS versus

SPS lie in constraints which invoke syllable structure directly. Though an exhaustive characterization of EAS syllabification is beyond the scope of this paper, the general picture emerges fairly clearly. I first assume that EAS and SPS share the ranking of constraints governing licit onset combinations. The dialects' respective hierarchies thus generate the same set of possible onsets, and, importantly, dictate which segments must be mapped into coda position for any given input string. Of interest here is that the difference between the dialects lies in the treatment of how input obstruents that cannot be mapped into output onsets are realized (or not) as codas. The task of generating the differences between the two dialects thus falls to the relative ranking of coda and faithfulness constraints.

This is the typical scenario in OT, according to which constraint ranking derives typological variation. For its part, SPS must be characterized by a high ranking of faithfulness over coda constraints, thus allowing for the independent licensing of obstruents in coda. In EAS, coda constraints on obstruents will outrank input faithfulness. Of course, coda constraints will not outrank all input-output faithfulness, given that EAS is not driven toward the more unmarked situation in which codas are banned altogether. Thus, EAS does not simply delete word-internal obstruents in coda position. Instead, it geminates the following onset to maintain a closed syllable. (Additionally, sonorant consonants must be allowed to surface as codas, as seen in forms such as [par.ke] 'park' or [al.kal.de] 'mayor'.)

As an illustration of how such an analysis would proceed, let us consider a form such as /kasta/ 'caste', which surfaces as [kat.ta]. ${ }^{12}$ First, assuming a correspondence-based view of faithfulness (McCarthy and Prince 1995), we might argue that MaxC militates for the preservation of input consonants, while Coda Condition (CodaCond) bans obstruents from coda position. (Note that for simplicity I employ CodaCond here as shorthand for the family of right margin constraints in Prince and Smolensky (1993); I return to this issue.) Simply ordering CodaCond» MaxC alone would produce the effect of deletion, predicting a surface [ka.ta]. Since s-aspiration in EAS preserves syllable weight, a highlyranked Max constraint for moras, MaxMora (see, for example Broselow, Chen, and Huffman 1997) would appear to be well motivated, as seen in (11) ${ }^{13}$
(11) MaxMora

Input: /kas.ta/	CodaCond	MaxMora	MaxC
a)			
b)	kas.ta	!	
c)			

Three points are of note regarding candidate (11c). First, while it preserves the moraic structure of the input, one might ask why vowel lengthening does not occur, giving us an optimal output of [kaa.ta]. Formally, this can be accomplished by penalizing surface long vowels more heavily than banning geminate consonants: *V: * * C . Both of these constraints must be ordered below MaxMora. ${ }^{14}$ Secondly, I have assessed a MaxC violation to the winning candidate in (11c) under the assumption that gemination involves the association of a single segment to the coda mora of the first syllable and the onset of the second (see Hayes 1989), as in (12).
(12) Geminate representation

The optimal output in (11) thus violates MaxC for the input/s/. Finally, I have not assessed a CodaCond violation to (11c), even though gemination supplies a coda consonant. In this sense, my use of CodaCond is clearly an oversimplification. A comprehensive analysis would require a more finely grained approach (cf. Ito 1989; Ito et al. 1995; Ito and Mester 1994), in which obstruents cannot be independently licensed in coda position. Specifically, the strategy would entail the argument that the shared association of the geminate segment spares it from violating CodaCond. By contrast, an obstruent uniquely associated to the final mora of the first syllable would violate CodaCond.

Note that the formal possibilities here vary depending on assumptions regarding the representation of geminates and the interpretation of association lines. More importantly, however, the particular articulation
of coda constraints is orthogonal to the larger issue under discussion. That is, the range of EAS facts receive the simplest, most unified account in terms of direct reference to syllable structure in the constraint hierarchy rather than in terms of a $* F$ (sans phonetic cues) approach to the data.

4. Conclusions

In this chapter, I have argued against viewing the licensing of contrast strictly in terms of licensing by phonetic cue. In so doing, I have provided evidence from Eastern Andalusian that strongly points towards the necessity of taking syllable structure into account in order to understand where obstruent contrasts can be licensed in this dialect. Though attempting to prove a negative is an inherently dangerous proposition, my analysis argues that phonology cannot reduce to directly referencing cues such as formant transitions, f0 perturbations, duration, and so forth. That is, we cannot (and thus should not) dispense with higher-order categorical categories such as onset and coda, nor with the constraints that refer to them in our OT grammar. In EAS, a highly ranked CodaCond (Ito et al. 1995; Ito and Mester 1994; Lombardi 1999, this volume) drives the surface licensing of contrastive obstruent features; that is, it neutralizes obstruents that are contrastive in coda position in the standard peninsular variety of the language.

I do not, however, wish to claim that the project of direct phonetic licensing is off the mark or that subphonemic phonetic cues have no place in phonological analyses. There are, in fact, good reasons to believe that such approaches provide productive and insightful results. A particularly important aspect of the cue licensing approach is that it attempts to derive phonological patterns from an in-depth consideration of the physiological and physical properties of both speech production and perception (cf. Ohala 1990; Lindblom 1990). The potential benefits are enormous if we consider the circularity in much phonological work. For example, Ohala (1990) discusses the pitfalls of invoking constraints such as * $[F]$ in coda, based on the observation that $[F]$ fails to appear in coda position in language after language. Undeniably, there is a fundamental circularity in using observed patterns of segmental ordering in syllables to derive a sonority hierarchy and subsequently using that same hierarchy to explain the possible orderings of segments within syllables. This is not to say that such a hierarchy fails to make predictions about the likelihood of finding particular syllable types in natural languages, but it offers little in the way of understanding why such patterns arise. ${ }^{15}$

Nevertheless, the EAS data show that it is not clear that the viability of such constraints obviates the need for traditional syllable-based analyses. To the extent that these approaches often afford identical empirical coverage, the situation invites reduction, as seen in Steriade's (1997) questioning of the relevance of syllable structure at all in conditioning segmental phonotactics. At the very least, a phonetic cues approach should shift the burden of proof to traditional approaches like the one I have sketched for EAS. That is, we must ask why one should resort first to explanations that are less directly grounded in articulation and/or acoustics, rather than assuming a priori the adequacy of an account based on higher-level constraints.

At this point, we are only at the initial stages of an exploration of these issues. And, for now, I would advocate a hybrid, and admittedly less restrictive, approach. That is, if it is necessary to recognize that phonetics drives much of phonotactics, we must also countenance the continuing relevance of more abstract phonological structures to our understanding of generalized patterns in the grammar. In simple terms, once such structures are part of the grammar, there is no reason to think that they, themselves, will not make their influence felt within the grammar.

Notes

Many thanks to audiences at the University of Maryland, UNC-Chapel Hill, and WCCFL 18 for their helpful feedback on earlier incarnations of this chapter. Thanks also to Megan Crowhurst and Pilar Piñar for their valuable input and to Linda Lombardi and Jaye Padgett for helpful criticism of this final version. All errors are my own.

1. See, for example, Archangeli and Pulleyblank (1994) for extended discussion of phonetically motivated grounding conditions that function, in essence, as soft universals.
2. Iam grateful to Paul Smolensky and Jaye Padgett for feedback on this issue. See Padgett (to appear) for additional discussion.
3. See also Padgett (1995), who proposes a constraint requiring Faithfulness to Release that presupposes syllabification in that consonants can be predicted to be released in part based on their position in the syllable.
4. The Klamath data are actually more complicated than discussed here in that laryngeal contrasts are neutralized not only before obstruents but also before aspirated and glottalized sonorants. See Steriade (1997) and the references therein for more details. The larger point regarding the role or non-role of syllable structure in the licensing of laryngeal contrasts in obstruents is not undermined by the additional data, however.
5. See Harris (1983) for the most complete overview of syllable structure in Spanish in general.
6. In peninsular dialects with phonetic [θ], there are numerous words containing [θ] word-finally, as in [lapie] 'stone'. In all American dialects and some peninsular dialects, of course, [θ] has merged with [s]. Some words also have a [d] word-finally (e.g., bajadolid/ 'Valladolid', /madrid/ 'Madrid'), and other obstruents surface in codas of word-final syllables in borrowed forms such as [klub] 'club' or [bileps] 'biceps', though these are highly marginal.
7. The lack of focus on word-internal s-aspiration is due to the potential morphological consequences of word-final s-aspiration, given that both familiarity and plurality are expressed by word-final /s/ in Spanish.
8. See also Gerfen and Piñar (1999) for evidence of the robust nature of the gemination process. In that study, ten native speakers of EAS exhibit the same pattern of gemination for $/ /$ in $\left[k a^{\mathrm{h}} \mathrm{ta} \mathrm{ta}\right]$ (from underlying /kas.ta/ "caste") that the two speakers here exhibit for /I/.
9. EAS does not ban codas altogether. Nasals and liquids do surface in coda position just as they do in SPS. Examples include forms such as [par.ke] 'park', [pal.ko] 'balcony', and [men.ta] 'mint'.
10. As pointed out in note 4, many Andalusians speak the so-called seseo dialect, in which all SPS interdental fricatives are realized as [s]. Thus, [ang.日jon] 'action' in the table is realized as [$a^{\text {b }}$ s.s.jon] in the seseo dialect.
11. One might argue that a phonetic cues approach to "s-aspiration" in /t/ contexts resides in the increased difficulty of releasing /t/into a lateral, as opposed to releasing velar or bilabial stops into a following lateral, as in forms such as [a.klara] in which there is no aspiration. Under such an approach, the aspiration of obstruents in Eastern Andalusian would obtain in the more phonetically driven unreleased contexts, rather than in syllablefinal position. The idea merits further investigation, though one would have to quantify more carefully the notion of difficulty. Note, for example, that $/ t /$ does not aspirate before the alveolar tap, as in [a.tra.pa] 'she traps'. Under the analysis here, this is due to the fact that /tr/ is a licit onset cluster, while /t// is not. A larger problem is that this account still fails to account for behavior of $/ \mathrm{s} /$, which aspirates before all following consonants. The treatment in the text unifies the explanation ander the rubric of the syllable.
12. I abstract away from the issue of aspiration here.
13. Note that, given richness of the base, there is no reason to assume that moraic information must be excluded from input.
14. Word-finally, where there is no following onset available for gemination, at least some degree of vowel lengthening does occur.
15. Jaye Padgett (p.c.) has questioned whether the sonority hierarchy does, in fact, make predictions, given that the predictions are based on observations of the kind of things being predicted. I would argue, in fact, that there are two distinct issues here. The first regards prediction, and the second regards explanatory depth. Clearly, a sonority herarchy derived from observing segmental ordering with syllables across many languages makes predictions about syllable phonotactics in languages outside the ser of languages used to derive the hierarchy. Nevertheless, what is missing is an explanation for why the hierarchy should be structured thus - that is, for why sound A is
more or less sonorous than sound B. Such an explanation camnot be derived from the facts of segmental sequencing.

References

Alarcos Llorach, E. 1958. Fonologia y Fonética: A Propósito de las Vocales Andaluzas, Archivum 8:191-203.
Archangeli, D., and D. Pulleyblank. 1994. Grounded Phonology. Cambridge, MA: MIT Press.
Beckman, J. 1997a. Positional Faithfulness, Positional Neutralisation and Shona Vowel Harmony. Phonology 14:1-46.
Beckman, J. 1997b. Positional Faithfulness PhD dissertation, University of Massachusetts, Amherst:
Blevins, J. 1993. Klamath Laryngeal Phonology International Journal of American Linguistics 59237-280.
Broselow, E., S-I. Chen, and M. Huffman. 1997. Syllable Weight: Convergence of Phonology and Phonetics Phonology 14:47-82.
Cohn, A. 1990. Phonetic and Phonological Rules of Nasalization. PhD dissertation, UCLA.
Cohn, A. 1993. Nasalization in English: Phonology or Phonetics. Phonology 10:43-81.
Cohn, A. 1999. The Phonetics-Phonology Interface Revisited: Where's Phonetics? In Texas Linguistic Forum 41: Exploring the Boundaries Between Phonetics and Phonology, ed. A. Doran, T. Majors, C. E. Mauk, and N. M. Goss, pp. 25-40. Austin, TX. University of Texas Department of Linguistics.
Dave, R. 1977. Retroflex and Dental Consonants in Gujarati: A Palatographic and Acoustic Study. Annual Report of the Institute of Phonetics, University of Copenhagen 11:27-156.
Flemming, E. 1995. Auditory Representations in Phonology. PhD dissertation, UCLA.
Gerfen, C. 1999. Phonology and Phonetics in Coatzospan Mixtec. Dordrecht: Kluwer.
Gerfen, C., and P. Piñar. 1999. Andalusian Codas. Paper presented at the annual meeting of the Linguistic Society of America, Los Angeles, CA.
Goldsmith, J. 1981. Subsegmentals in Spanish Phonology: An Autosegmental Approach. In Linguistic Symposium on Romance Languages 9, ed. W. Cressey and D. I. Napoli, pp. 1-16. Washington, DC: Georgetown University Press.
Guitart, J. M. 1985. Vaxiable Rules in Caribbean Spanish and the Organization of Phonology. In Current Issues in Hispanic Phonology and Morphology, ed. F. Nuessel, pp. 28-33. Bloomington, IN: Indiana University Linguistics Club.
Harris, J. 1983. Syllable Structure and Stress in Spanish. Cambridge, MA: MTT Press.
Hayes, B. 1989. Compensatory Lengthening in Moraic Phonology. Linguistic Inquiry 20:253-306.

Hualde, J. 1. 1987. Delinking Processes in Romance. In Studies in Romance Linguistics, ed. C. Kirschener and y. DeCesaris, pp. 177-193. Philadelpha: Benjamins.
Huffman, M. K. 1989. Implementation of Nasal: Timing and Articulatory Landmarks. PhD dissertation, UCLA.
Muffmar, M. K. 1993. Phonetic Patterns of Nasalization and Implications for Feature Specification. In Phonetics and Phonology 5: Nasals, Nasalization, and the Velum, ed. M. K. Hufman and R. A. Krakow, pp. 303-327. San Diego, CA: Academic.
1to, 1. 1989. A Prosodic Theory of Epenthesis. Natural Language and Linguistic Theory 7:217-259.
Ito, J., and A. Mester. 1994. Reflections on CodaCond and Alignment. In Phonology at Santa Cruz 3, ed. R. Walker, J. Padgett, and J. Merchant, pp. 27-46. Santa Cruz, CA: Linguistics Research Center.
Ko, J., A. Mester, and J. Padgett. 1995. NC. Licensing and Underspecification in Optimality Theory Linguistic Inquiry 26:571-613.
Johnson, K. 1997. Acoustic and Auditory Phonetics. Oxford: Blackwell.
Keating, P 1988 . Underspecifcation in Phonetics. Phonology 5.275-292.
Keating, P. 1990. Phonetic Representation in a Generative Grammar. Ioumal of Phoneties 18:321-334.
Kingston, J., and R. Dieh. 1994. Phonetic Knowledge. Language 70.419-454.
Kirchner, R. 1997 . Contrastiveness and Fathfulness. Phonology 14:83-111.
Lindblom; B. 1990. On the Notion of "Possible Speech Sound." Joumal of Phonetics 18:135-152.
Lombardi, L. 1991. Laryngeal Features: and Laxyngeal Neutralization. PhD dissertation, University of Massachusetts at Amherst.
Lombardi, L. 1995. Laryngeal Neutalization and Sylable Wellformedness. Natural Langtuage and Linguistic Theory 13:39-74.
Lombard, L. 1999. Positional Faithfulness and Voicing Assimilation in Optmality Theory. Natural Language and Linguistic Theory 17:267-302.
McCarthy, I, and A. Prince. 1993. Generalized Alignment. In Yearbook of Morphology 1993, ed. G. Booij and J. van Marle, pp. 79-153. Dordrecht: Kluwer.
McCarthy, I., and A. Prince. 1995. Faithfulness and Reduplicative. Identity. In University of Massachusetts Occasional Papers in Linguistics 18. Papers in Optimality Theory, pp. 249-384. Amherst, MA: GLSA. ROA 60-0000, http//ruces.rutgersedu/roahtml.
Myers, S. 1099 Surface Underspecification of Tone in Chichewa. In Texas Linguistic Forum 4: Exploring the Boundaries between phonetics and Phonology, ed. A. Doran, T. Majors, C. E. Mauk, and N. M. Goss, pp. 117-132. Austin, TX: University of Texas Department of Linguistics.
Ohala, J. J. 1990. There is No Interface between Phonology and Phonetics: A Personal View. Journal of Phonetics 18.153-171.
Padgett, J. 1995. Partial Class Behavior and Nasal Place Assimilation. In Proceedings of the Sowthwestern Optimality Theory Workshop, pp.145-183. Tucson, AZ. University of Arizona Department of Linguistics Coyote Working Papers.

Padgett, I. To appear. Contrast Dispersion and Russian Palatalization. In The Role of Speech Perception Phenomena in Phonology, ed. E. V. Hume and K. Johnson. San Diego, CA: Academic.
Pierrehumbert, I. B. 1980. The Phonetics and Phonology of English Intonation. PhD dissertation, MTr.
Pierrehumbert, J. B. 1991. The Whole Theory of Sound Structure Phonetica 48:223-232.
Pierrehumbert, J. B., and M. E. Beckman. 1988. Japanese Tone Siructure. Cambridge, MA: MTT Press.
Prince, A., and P. Smolensky. 1993. Optimally Theory: Constraint Interaction in a Generative Grammar. To appear, MTT Press.
Rodriguez Castellano, L., and A. Palacio. 1948. El Habla de Cabra. Revista de dialectologia y tradiciones populares 4378-418.
Romero, 1. 1995. Gestural Organization in Spanish: An Experimental Study of Spirantization and Aspiration. PhD dissertation, University of Connecticut.
Shadle, C. H. 1997. The Aerodynamics of Speech. In The Handbook of Phonetic Sciences, ed. W. J. Hardcastle and J. Laver, pp. 33-64. Oxford: Blackwell.
Steriade, D. 1997. Phonetics in Phonology: The Case of Laryngeal Neutralization. Ms, UCLA.
Stevens, K. 1998. Acoustic Phonetics. Cambridge, MA: MIT Press.
Zamora Munné, J. C., and M. M. Guitart, 1982. Dialectología Hispanoamericana: Teoría, Descripción, Historia. Salamanca: Ediciones Amar.
Zamora Vicente, A. 1969. Dialectologia Española (2nd ed.) Madrid: Gredos.
Zsiga, E. 1997. Features, Gestures, and Igbo Vowel Assimilation: An Approach to the Phonology/Phonetics Mapping. Language 73:227-275.

